
\docu men tel ass[eng I ish]{ article}
\usepackage{mathptmx}
\usepackage{helvet}
\renewcommand{\ttdefault}{lmtt}
\renewcommand{\familydefault}{\rmdefault}
\usepackage[T1]{fontenc}
\usepackage[latin 1]{inputenc}
\usepackage{geometry}
\geometry{ verbose ,letterpaper, tmargin=1 in ,bmarg in=1 in ,lmargin=1 in ,rmargin=1 in ,headheight=Ocm,heads
ep=Ocm,footskip=0.5in}
\setlength{\parskip}{\medskipamount}
\setlength{\parindent}{Opt}
\usepackage{longtable}
\usepackage{listings}

\makeatletter

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% LyX specific LaTeX commands.
\newcommand{\noun}[1]{\textsc{#1}}
%%Bold symbol macro for standard LaTeX users
\providecommand{\boldsymbol}[1]{\mbox{\boldmath $#1$}}

%% Because html converters don't know tabularnewline
\providecommand{\tabu larnew I i ne }{\ \}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% User specified LaTeX commands.

\usepackage{xspace}
\newcommand{\R}{\textbf{\textsf{R}}\xspace}
\newcomma nd{\odesolve }{\textbf{\textsf{ odesolve}} \xs pace}
\newcommand{\deSolve}{\textbf{\textsf{deSolve}}\xspace}
\newcommand{\RDynamic}{\textbf{\textsf{RDynamic}}\xspace}
%%Reserved words as texttt
\newcommand{\BEGIN}{\texttt{BEGIN}\xspace}
\newcommand{\VARIABLES}{\texttt{V ARIABLES}\xspace}
\newcommand{\ST ATE}{\texttt{ST ATE}\xspace}
\newcommand{\FORCINGS}{\texttt{FORCINGS}\xspace}
\newcommand{\PULSES}{\texttt{PULSES}\xspace}
\newcommand{\LINEAR}{\texttt{LINEAR}\xspace}
\newcommand{\RSTEP}{\texttt{RSTEP}\xspace}
\newcommand{\LSTEP}{\texttt{LSTEP}\xspace}
\newcommand{\PARAMETERS}{\texttt{PARAM ETERS}\xspace}
\newcommand{\JUMPS}{\texttt{JUMPS}\xspace}
\newcommand{\END}{\texttt{END}\xspace}
\newcommand{\CONTI N UOUS}{\texttt{CONTI N UOUS}\xspace}
\newcommand{\ARRAY}{\texttt{ARRAY}\xspace}
\newcommand{\FOR}{\texttt{FOR}\xspace}
\newcommand{\KEEP}{\texttt{KEEP}\xspace}
\newcommand{\TIME}{\texttt{TIME}\xspace}
\newcommand{\ACTIONS}{\texttt{ACTIONS}\xspace}
\newcommand{\EVENT}{\texttt{EVENT}\xspace}
\newcommand{\TRIGGER}{\texttt{TRIGGER}\xspace}
\newcommand{\1 NSERTEVENT}{\texttt{l NSERT_EVENT}\xspace}

%%

ED_001592_0001824 7-00001

\usepackage{babe I}
\makeatother
\usepackage{hyperref}
\begin{ document}

\title{\RDynamic is an \R Package for Dynamic Modeling}

\author{R. Woodrow Setzer\\
National Center for Computational Toxicology\\
US Environmental Protection Agency}

\make title

\section{lntroduction}

Why another package for dynamic modeling? While other packages are
quite good at facilitating dynamic modeling, they generally are fairly
inadequate when it comes to using the resulting dynamic models with
data. Real data come from often complex experimental designs, so that
the least squares and weighted least squares approaches that are available
in modeling packages that focus on dynamic modeling are often inadequate.
\RDynamic was written to allow dynamic models (models written as
systems of ordinary differential equations) to be written in a simple
syntax, then translated into a c source file that can be compiled,
dynamically loaded, and integrated with the \deSolve package already
available in \R.

While it may prove useful in other arenas, \RDynamic was written
primarily to help with physiologically-based pharmacokinetic and
pharmacodynamic models. Such models typically are defined as systems
of a few tens of ordinary differential equations, and may have dozens
or hundreds of parameters, most of which are based on known (or
supposed) physiological constants. Unlike many dynamic models in
biomathematics, whose value is largely in their qualitative results,
PBPKIPD models are intended to produce quantitative predictions. Thus,
there is value in being able to develop such models so that they can
be embedded in sophisticated statistical methodologies.

\section{Using a Model Produced by \RDynamic}
Models produced by \texttt{RDynamic::ode2c()} are used just like any
other \R function. When it is called, the model function runs the
dynamic model and returns the values of state variables at a
prespecified set of desired time points. The result of such a call
is often referred to as a "simulation" in what follows.

\section{Components of a Dynamic Model}

It is convenient to consider the variables in a dynamic model with
respect to how their values change in the course of a simulation.
\RDynamic divides variables in a model into two
groups. \emph{Parameters} control the detailed behavior of a model,
and are constant through any simulation. They may be set
independently, or may depend upon the values of other parameters. Once
set at the beginning of a simulation run, the values of all parameters
remain constant. \emph{Variables} are all the variables that change

ED_001592_0001824 7-00002

value during a simulation run. Together, they describe those aspects
of a system that evolve during a simulation, and, thus, model those
values of the target system that change over time. Variables include
both \emph{state variables}, whose value is dermined intrinsically,
for example, as described by systems of difference or differential
equations, and which require initial values, variables whose value is
determined extrinsically (or forcings), and variables that are
functions of the other variables. An example of the first in a
PBPK model are \emph{amounts} of parent compound in a tissue
compartment. An example of a variable whose value is determined
extrinsically would be an indicator
variable that changes from 0 to 1 at 8:00 am and from 1 to 0 at 5:00
PM, and indicates whether an inhalation exposure is occurring.
Finally, the \emph{concentration} of parent compound is of interest,
and is the amount divided by the tissue volume, in a PBPK model.

The model definition needs to describe several characteristics of
the dynamic system:

\begin{itemize}
\item the values of parameters, and how the values of some parameters

are derived from the values of others;
\item the initial values of state variables (which may be determined

by parameters);
\item and how each state variable changes value, as a function of

time, parameter values, and the values of other state variables.
\end{itemize}
Two special cases for how state variables change value are covered in
special structures in \RDynamic: continuous change over time,
described by systems of ordinary differential equations, and discrete
changes over time, described by structures called \emph{events}. The
value of any given state variable may jump from time to time, or when
state variables satisfy a predetermined condition, as well as change
continuously between jumps. For example, (at least as an
approximation) stomach contents change continuously in time as the
stomach empties into the small intestine, but may jump discretely with
periodic gavage dosing or eating events.

A simulation of an \RDynamic model results in a matrix of values
of state variables at a discrete set of times, specified in advance
of the simulation (as well as auxiliary information about the run
that produced the output, to facilitate documentation).

\section{The \RDynamic Language}

In \RDynamic, the characteristics that together describe a dynamic
system are defined in a separate block of code, each with its own
syntax. It is better to think of \emph{describing} a dynamic system
with \RDynamic, rather than \emph{programming} it. Thus, statements
within each block may be written in any convenient order (with some
logical exceptions in the \noun{EVENT} block). In particular, values
may be used before they are defined, if that leads to a clearer
exposition. The function Ode2c takes care of turning the model
description into a program that can be executed to simulate the
dynamic system. Two kinds of comments are available to clarify the

ED_001592_0001824 7-00003

model exposition and facilitate the construction of online
documentation for the model. Units may be specified and will be
tracked if supplied. In this section, I first go through an example of
a model in \RDynamic, then describe each of the elements of the
language in more detail.

\subsection{Example: PBPK Model for Pyrethroid Kinetics}

This example is included in full in the appendix.

\subsubsection{Prolog}

\RDynamic includes language elements designed to encourage model
documentation, by allowing narrative documentation in the model file
that will be incorporated into online documentation in the final compiled
package. The model prolog includes several subsections.

\begin{verbatim}
@Title: Model for Pyrethroid kinetics
@Version: 11
@Date 09/20/2007
@Author: R. Woodrow Setzer
@BEGIN Description
Model for pyrethroid absorption, distribution, and metabolism. The
parameter values in the current file are for deltamethrin, with physiological
parameters for rats, but the intent is for the model structure to be the
same for any pyrethroid, and humans as well as rats.
@END Description
@BEGIN DOC
This is a translation of Matlab code by Mirfazaelian et al., modified by
Rogelio Tornero and Steve Godin. The translation closely follows the
original code; the ODEs
are largely in the same order as in the original. State variables are
slightly reordered.
@END Doc
\end{ verbatim}
Note the keyword:value pairs for keywords Title, Version, Date, and
Author. They are introduced with an{}"@", and separated by{}":"
and any number of spaces. The values in each case should be short,
and are incorporated both into the online help and the model object
itself. In particular, the version number is saved with the compiled
model, and documents results, so any simulation output contains the
version number for the model that produced it. Thus, as long as the
modeler is careful to update the version number of each model, it
is possible to track modeling results back to the version of the model
that produced them. Two longer fields are available in the prolog:
{}"Description" and {}"DOC". These are both introduced by
{}"@BEGIN" and closed with {}"@END", followed by the name
of the field. The {}"Description" field should be fairly short,
just a few sentences that give a high level description of the model.
Any more detailed documentation should go into {}"DOC".

\subsubsection{\VARIABLES}
The \VARIABLES block contains declarations and (when required)

ED_001592_0001824 7-00004

initializations of quantities that change with time. These variables
fall into three general categories: state variables, which need to be
assigned initial values, and whose trajectory through time define the
dynamic system; inputs, whose values change autonomously through time,
and represent forcings for the dynamic system (such as repeated dosing
in a pharmacokinetic model, periodic nutrient inputs in an ecological
model, or greenhouse gas concentrations in a climate model); and
variables whose value is interesting, but which are functions of other
values in the system (such as concentrations, when the corresponding
masses are state variables). These latter variables do not need
initialization, but do need to be documented, and flagged so their
values are retained. \VARIABLES contains two sub-blocks for declaring
state variables and inputs, each bracketed with a BEGIN-- END pair.

Any state variable in the \CONTINUOUS or
\JUMPS portion of the model whose value is not just a function
of other variables will need to be both declared and given initial
values.
This occurs in the \STATE subblock. Initial values may either be
constants (since this is a PBPK model for an exogenous compound, the
initial concentration in all tissue compartments is 0.0, for example),
or an algebraic expression involving the values of parameters (defined
in the \PARAMETERS block) and constants. Here is part of the \VARIABLES
block of the pyrethroid model (omissions are marked by elipses):

\begin{verbatim}
BEGIN VARIABLES

BEGIN STATE# Names and initial values

Dosing - Oral route
ASTM =stomach @ (umole) Amt in stomach;
AINT = 0.0 @ (umole) Amt in intestine;
Oral = 0.0 @ Amt absorbed via the oral pathway;

#Dosing- IV route
riV = ivdose*BW*moi/Tinf @rate of injection;

END# State
UER @ Rate of urinary elimination;
CA @Concentration in arterial blood;
CVF;

END #Variables
\end{ verbatim}
The block begins with "\texttt{BEGIN VARIABLES}" and ends with
"\texttt{END}" (the "\texttt{\# State}" is a comment which is
not required, but helps make the code more readable). Each state
variable that requires an initial value must appear in the \STATE
block, separated from its initial value by the"=" sign. The
initial value may be numeric (e.g., all the 0.0 values) or an
algebraic expression using variables defined in the \PARAMETERS block.
Document strings start with an ampersand ("\verb+@+") and
continue to the end of the line. Document strings should be
thought of as optional parts of the statement.
Statements are terminated with semicolons ("\verb+;+").

ED_001592_0001824 7-00005

Variables that are simply functions of other variables, and whose
values are of interest, are declared in a \KEEP declaration. \KEEP
declarations begin with the keyword \KEEP, followed by variable names
and documentation strings, separated by commas. The entire statement
is terminated by a semicolon. Only one \KEEP statement is allowed in
the \STATE block, but it may span multiple lines. Note that, since
the comma is used as a separator, it may not appear in any
documentation strings in a \KEEP statement.
State variables may also be declared and initialized as arrays. See
section \ref{sec:arrays} for details.

\subsubsection{Comments}
Two kinds of comments are used here and elsewhere in
\RDynamic. Comments that start with a "\verb+#+" symbol are used to
annotate the file containing the model description. The parser stops
reading a line when it reaches a "\verb+#+", so anything can be put
after that symbol. This kind of comment is a good way to label
different parts of the code. In the example, state variables are
grouped and identified as, for example, relating to dosing or blood
concentrations. Multiline comments can be created using the C-language
style "\verb+/* */+":

\begin{verbatim}
I* This is an example of a multi-line comment in RDynamic.

*I

It helps to indent the block on the left, so it is easier to read.
Also, indent bullets:

- Good for notating changes to the code

- listing reasons for a particular construction

-etc.

\end{ verbatim}
The comment delimiters ("\verb+/* */+") can appear anywhere on a
line. The parser will ignore everything between them. Comments that
start with a "\verb+@+" introduce information that will go into the
documentation file. In the \STATE block, it is best to think of the
declarations as having two separators: "\verb+=+", that indicates an
association between a state variable and its initial value, and
"\verb+@+", that separates the previous pair and a descriptor. This
is a one-line comment, used generally for labeling a state
variable. It is also is useful for documenting
the units of the state variable.

\subsubsection{\PARAMETERS}

The \PARAMETERS block is syntactically similar to the \STATE block.
It is a list of variable names and initializers, separated by{}"="
signs. The "\verb+@+" comment works just as it does in the \STATE block,
as do the other comments. Here is an excerpt from the pyrethroid model:

\begin{verbatim}
BEGIN PARAMETERS

ED_001592_0001824 7-00006

Dose-related --
Oral gavage:

oraldose = 0.0;
stomach = oraldose * BW * mol;

#IV Injection:
ivdose=O.O;
Tinf=0.005;

#Physiological Parameters (These are rat values)--------------------

BW = 0.41
QCC = 14.10

@kg;
@ (L/h/kgA0.75) Brown et al [60 * 0.235];

Deltamethrin specific parameters ----------------------------------

MW= 505.
mol= 1 000/MW

@ Molecular weight (ug/umol);
@correction factor for mg-->umol;

Liver metabolic clearance
Clox = 5.3 @ L/h/kg;
Clest = 0.0 @ Llh/kg;
Kbld = 0.0012 @ L/h/ml serum;

END# Parameters
\end{ verbatim}
Note that values on the right hand side of assignments may be numbers
or algebraic expressions of other parameters. Users may assign new
values at the beginning of a simulation to parameters that have been
initialized with numbers (primary parameters). Parameters initialized
with expressions (secondary parameters), are determined by the values
of primary parameters and other secondary parameters. Their value
can not be assigned arbitrarily in simulation runs.

As in other blocks, the modeler is free to write parameter definitions
in any order that is convenient. This allows definitions of related
parameters to be grouped together to facilitate documentation.

The algebraic expressions that appear on the right hand side of parameter
declarations may include any of a large number of special functions.
See section \ref{sub:functions} for a list.

Parameters may also be declared and used as arrays. See
\ref{sec:arrays} for more details.

\subsubsection{\CONTINUOUS}

ED _00 1592_000 1824 7-00007

\CONTINUOUS includes definitions of variables and their time derivatives,
and describes how variables change value continuously in time. This
is in contrast to \JUMPS (discussed in the next section), which describe
saltations in the values of state variables. This is also where variables
whose values come from explicit functions of other state variables,
parameters, and time are defined. Again, an excerpt from the pyrethroid
model:

\begin{verbatim}
BEGIN CONTINUOUS
#Define concentrations based on state variable (amounts)
I intracellular
E extracellular

CA =ABLNBL;

Concentration in the blood compartmetnt and blood clearance

CV = (QF*CVF + QR*CVR + QS*CVS + QBRN*CVBRN + QL *CVL)/QC;

CaEP' = Kbld*VBL*CA; #blood clearace via esterases (umol/h)
ABL' = QC*CV- QC*CA- CaEP' + riV;

diffusion-limited compartments

AEF' = QF*(CA-CVF) + PAF*(CIF/PF-CVF);
AIF' = PAF*(CVF-CIF/PF);

END #Continuous
\end{ verbatim}

(umol/hr)

There are no documentation strings in the \CONTINUOUS section, but the other
two comment types may be used freely. Note that derivatives are indicated
by appending an apostrophe to state variable name (e.g. \verb+AEF'+).
Names of derivatives may be used on the right hand side of variable
definitions, as well. Any variable that appears on the left hand side
of an assignment that is not declared as a state variable will be
invisible outside the scope of the \CONTINUOUS block.

\subsubsection{\JUMPS}

The \JUMPS block defines when the values of state variables jump, and
by how much. \JUMPS must contain three sub-blocks to be complete:
\begin{itemize}
\item \EVENT: defines what happens. Any state variable may appear on

the right hand side of an assignment, and any legal expression
involving state variables and parameters may appear on the left hand
side. \FOR loops and IF THEN ELSE control structures are allowed.
The special variable \TIME will contain the value of the time
variable when the event was triggered. The special function
\INSERTEVENT may be used to add new events to the action list (see
\ACTIONS, below. There may be and often will be multiple events
defined in a model.

\item \TRIGGER: defines when events may happen. Generally, think of
this as a function that returns 0.0 when you want to trigger an

ED_001592_0001824 7-00008

event. The final expression in a \TRIGGER is the return value. It
must be a scaler, and must be a legal right hand side expression. A
trigger function may be a function of \TIME and any or all state
variables.

A special form applies when you want to set a trigger to
go off at a particular time. This is the form shown in the
example, in which the final expression in the trigger definition is
of the form "\verbJTIME ==value; I". There may be multiple
\TRIGGER blocks in \JUMPS.

\item \ACTIONS: associates triggers with events. It is just a string
of pairs, first a trigger, followed by an event. If there are
multiple events listed for a trigger, they are executed in the order
in this list. There must be only one \ACTIONS block in a program.

\end{itemize}

Subblocks of \JUMPS consist of one of the keywords with only white
space (spaces and tabs) before it on its line, followed by a left
curly brace, one or several legal expressions (defined above),
followed by a right curly brace on a line by itself.

The function \verb+INSERT_EVENT(what, when)+ inserts the event 'what'
into the list of events to be executed when the trigger 'when' goes
off. The event 'what' must be defined in the JUMPS section.
'when' must be a defined trigger or the special phrase 'TIME==
value', where value is a constant or variable whose value is available
within the \EVENT function from which \INSERTEVENT has been called.

In \EVENT{}s and \TRIGGER{}s, any undeclared variable will be assumed to
be local, and its value will disappear on exit from the function.
Only state or local variables may appear on the left hand side of
assignments in event definitions, but right hand sides may include
parameters, state variables, constants, and \TIME. They may also
include any of the functions available in the other blocks. Finally,
special IF and IF ... THEN ELSE ... blocks are available for defining
events. Here is the JUMPS block from the pyrethroid model:

\begin{verbatim}
BEGIN JUMPS

EVENT stop-infusion {
riV = 0.0;

}
TRIGGER when_stop-infusion {

TIME== Tint;
}
ACTIONS {

}
END# Jumps
\end{ verbatim}

when_stop-infusion stop-infusion;

Again, only "\verb+#+" and "\verb+/**/+" style comments are
available.

\subsection{Additional Language Details}

ED_001592_0001824 7-00009

\subsubsection{Reserved Words}

The following are reserved words, and should not be used as variable
names: BEGIN, END, PARAMETERS, STATE, CONTINUOUS, FUNCTION, ARRAY, JUMPS,
EVENT, TRIGGER, ACTIONS, IF, THEN, ELSE, FOR, TIME, KEEP. Reserved
words are written in all capital letters.

\subsubsection{\label{sub:functions}Arithmetic Operators and Mathematical Functions}

The following operators may be used whenever mathamatical operations
are allowed: the usual operators for addition, subtraction, multiplication,
and division: \verb:+-*/:; exponentiation:\verb+A+ or \verb+**+.
Math functions that are available are:

\begin{longtable}{JIIIII}
\hline
Function & Definition\tabularnewline
\hline
\end head
exp(x) & exponential: $eA{x}$\tabularnewline
log(x) & natural logarithm ($x>O$)\tabularnewline
log1 O(x) & base 10 logarithm ($x>O$)\tabularnewline
sin(x) & trigonometric sine function (argument in radians)\tabularnewline
cos(x) & trigonometric cosine function (argument in radians)\tabularnewline
asin(x) & trigonometric arcsine function ($-1<x<1$)\tabularnewline
acos(x) & trigonometric arccosine function ($-1<x<1$)\tabularnewline
sqrt(x) & square root ($x\geq0$)\tabularnewline
sinh(x) & hyperbolic sine\tabularnewline
asinh(x) & hyperbolic arcsine\tabularnewline
cosh(x) & hyperbolic cosine\tabularnewline
acosh(x) & hyperbolic arccosine\tabularnewline
gammafn(x) & the Gamma function\tabularnewline
lgammafn(x) & natural log of the Gamma function\tabularnewline
beta(a, b) & The complete beta function\tabularnewline
lbeta(a, b) & natural log of beta(a, b)\tabularnewline
ifthenelse(a,b,c) & b if a is not 0, else c (not for CONTINUOUS block)\tabularnewline
\hline
\end{longtable}

Other functions may be added to these as needed.

\subsubsection{Variable and Function Names}

All variable names begin with an alphabetic character, and may include
letters and numerals. All names are case-sensitive.

\subsubsection{Arrays}
\label{sec:arrays}

\RDynamic provides a limited implementation of arrays for parameters
and state variables. Arrays are indexed beginning with 1 (as in
Fortran and R).
Arrays are declared in either \PARAMETERS or

ED_001592_00018247-0001 0

\STATE, and referred to as in an R array. That is, the indices are
enclosed in square brackets, and indices for the different dimensions
separated by commas. To assign a value to
an element of an array, say var1 [1], or var2[2,3]:
\begin{verbatim}
var1[1] =a+ b *TIME;
var2[2,3] = 42;
\end{ verbatim}
A construct is available to conveniently initialize arrays in \STATE
and \PARAMETERS, and \FOR loops are available in \CONTINUOUS and
\JUMPS for simplifying using arrays in repetitive structures. Except
for the index variable declared in a \FOR loop, array indices must be
integer constants.

\paragraph{Declaring Arrays}

State variables and parameters may be components of arrays. Arrays
must be declared in either the \STATE or \PARAMETERS blocks using the
\ARRAY statement:
\begin{verbatim}
ARRAY var1[10], var2[3,6];
\end{ verbatim}
Here var1 and var2 may be parameters (in a \PARAMETERS block) or state
variables (in a \STATE block). The dimensions must be constant integers, and
an arbitrary number of dimensions is allowed. On declaration, all
elements in an array are initialized to 0.0.

\paragraph{lnitializing Arrays}

Array elements in \STATE or \PARAMETERS may be initialized
one-at-a-time just as any other variable:
\begin{verbatim}
var[12] = 12.9
\end{ verbatim}
Alternatively, elements of an array may be block initialized:
\begin{verbatim}
ARRAY var[2,3], var2[5];
var2 = {1., 2., 3., 4., 5.};
var = {{1.0, 5.0, 2.1}

{var2[1], 23*Tstab, 7 .3}};
\end{ verbatim}
lnitializers must follow the same rules as any other initializer;
array elements in an array must not be used to initialize other
elements in the same array, and dependencies among arrays must form
acyclic chains. That is, the following would be illegal:
\begin{verbatim}
ARRAY var[2,3], var2[5];
var2 = {1., 2., 3., 4., var[1 ,3]};
var = {{1.0, 5.0, 2.1}

{var2[1], 23*Tstab, 7 .3}};
\end{ verbatim}

If two arrays have the same extent, the initialization may be
completely implicit:
\begin{verbatim}
BEGIN PARAMETERS

ED_001592_00018247-00011

ARRAY lnit[6];
lnit = {12., 0., 0., 0., 0., 0.};

END
BEGIN STATE
ARRAY Svar[6];
Svar =I nit;

END
\end{ verbatim}
\paragraph{\FOR loops}
\FOR loops are used in \CONTINUOUS and \JUMPS to simplify repetitive
expressions. They are actually unrolled during translation (not
during execution, so limits of\FOR loops must be integer constants.
The syntax is:
\begin{verbatim}
FOR (lndexvar IN llim:ulim) {
expressions
}
\end{ verbatim}
The variable \texttt{lndexvar} must not be declared elsewhere, and
\texttt{llim} and \texttt{ulim} must be numeric constants. \FOR loops
may be nested.

For example:
\begin{verbatim}
Svar[1]' = r[1] * Svar[1]- (a[1] + m[1])*Svar[1];
FOR (I in 2:6) {
Svar[l]' = a[I-1]*Svar[l-1] + r[l] * Svar[l]- (r[l] + m[l]) * Svar[l];

}
Svar[7] = a[6] * Svar[6] + r[7] * Svar[7] - m[7] * Svar[7];
\end{ verbatim}

\subsubsection{Ordering and Separating Definitions in the \PARAMETERS and \STATE Blocks}

Multiple declarations can appear on the same line (though this should
generally be avoided, as it makes reading and documenting the code
more difficult), and value expressions may extend over onto multiple
lines.

\paragraph{\PARAM ETERS}

There is no ordering requirement for statements in the \PARAMETERS block.
The translater will optionally sort the declarations so that no value
is used before it is declared. It is an error to define a parameter
value using other than numeric constants or expressions involving
numeric constants and other parameters.

\paragraph{\ST ATE}

There is no ordering requirement for statements in the \STATE block,
either. The translator will optionally sort the declarations so that
no value is used before it is declared. The \STATE block should
include declarations for every variable that changes through time
(either continuously or in saltations through having its value defined
in the \JUMPS block)

ED_001592_00018247-00012

There must be a state variable for each derivative defined in the
\CONTINUOUS block, at least.

\subsubsection{\CONTINUOUS}

The base variable name of every primed variable must appear in \STATE;
other variables appearing on the left hand side of assignments in
\CONTINUOUS that have not been declared in \STATE will be
treated as local (and their values inaccessible outside of the derivative
definitions). The special variable \TIME refers to the time at which
the derivatives are being computed, to allow for inhomogeneous systems
of equations.

\subsubsection{\JUMPS}

\paragraph{Syntax of the IF and IF THEN ELSE Statements}
An \EVENT or \TRIGGER definition may contain IF and IF THEN ELSE statements to
allow for conditional computation of changes to state variable values.
The syntax is similar to the corresponding expression in C, except
for mandatory curly braces:
\begin{verbatim}
IF (condition) {assignments, possibly multi-line}
\end{ verbatim}
and

\begin{verbatim}
IF (condition) {
assignments, possibly multi-line

} ELSE {
alternative assignments, possibly multi-line

}
\end{ verbatim}
These are like the same clauses in C, and unlike in R, in that the
IF ... statements do not have a return value, but are purely control
structures.

The 'condition' expression may use the usual numeric comparison operators:
>, >=, <, <=, ==; and the logical operators ! (for NOT),\& (for AND)
and 1 (for OR). Use parentheses liberally for grouping, but the usual
C language priorities apply. The conditional expression is triggered
if 'condition' evaluates to be a non-zero quantity.

\subsubsection{Forcings}
\label{sec:forcings}

\RDynamic uses special variables to represent forcings that change
discretely as a function of time. These variables are declared in the
\FORGINGS subblock of the \VARIABLES block. Currently four types of
forcings are available. All forcings require the declaration of a
two-dimentional array in the \PARAMETERS block. The syntax for
declaring a forcing is:
\begin{verbatim}
BEGIN FORGINGS
Var =Type Array@(...) ... ;

ED_001592_00018247-00013

END
\end{ verbatim}
Here, Var is a name that will be used in the \CONTINUOUS block. There
it will appear as any other parameter or variable (with exceptions
listed below in the sections on the individual forcing types). Type
give the type of forcing to be assigned to Var. Currently, forcing
types that are available are: PULSES, LINEAR, RSTEP, and LSTEP.
Subsequent paragraphs define them further. Finally, the data that
control the functions are stored in the two-dimensional array Array,
which must be declared as a parameter. Array has two columns, and an
arbitrary number of rows. The first column of Array holds time
points, and the second, value. In the descriptions that follow,
assume A is the array in the declaration.

\paragraph{\PULSES}

At each time point A[i, 1], a variable declared as type \PULSES
momentarily takes the value in A[i,2]. This is useful for
incrementing the value of state variables at discrete times, for
example, to simulate ingestion in a pharmacokinetic model, or
reproduction in a population dynamic model. A variable declared to be
a forcing of type \PULSES may only be used in an assignment expression
with a state variable on the left hand side, involving only forcings,
parameters, and variables on the right hand side (that is, no local
variables). This is the \emph{only} situation where a state variable
may appear on the left hand side in \CONTINUOUS.

For example, suppose a model includes a daily ingestion
of pesticide X as residue in grapefruit. This is implemented by
incrementing the stomach contents (variable ASTM)daily at 7:30AM with
a small amount of X, determined, perhaps, from a separate exposure
simulation based on sampling grapefruit in the marketplace.

First, declare the array to hold the times and dietary increments
in \PARAMETERS:
\begin{verbatim}
ARRAY Xdiet[*,2];
\end{ verbatim}
This declares \texttt{Xdiet} to be an array with two columns, but
whose number of rows will be determined from the initialization at
run-time. For sake of example, assume the ingestion amount is
log-normally distributed with meanlog=log(1e-7) and coefficient of
variation about 90\% (it could as easily have been read from a file
produced by an external program). In R, we create a matrix:
\begin{verbatim}
A<-

matrix(c(7.5 + seq(0,10*24,by=24),
rlnorm(meanlog=log(1e-6), sdlog=0.9)))

\end{ verbatim}
The call to the model (say \texttt{pyrethroid} in this case) is
\begin{verbatim}
out<- pyrethroid(Times, newParms=list(Xdiet=A))
\end{ verbatim}

In the model definition, in \VARIABLES is the block:

ED_001592_00018247-00014

\begin{verbatim}
BEGIN FORGINGS
Xdiet = PULSES A @ (mg/day) amount of X ingested daily;

END
\end{ verbatim}

Finally, in \CONTINUOUS
\begin{verbatim}
ASTM = ASTM + Xdiet;
\end{ verbatim}

\paragraph{\LINEAR, \RSTEP, and \LSTEP}

Forcings of type \LINEAR return a result that is linearly interpolated
between the values in \texttt{A}. That is, if NOW lies between
\texttt{A[i, 1]} and \texttt{A[i+1, 1]}, then the value of a forcing of
type \LINEAR is
\begin{ equation}

\label{eq:linear}
\frac{\mathit{NOW}}{A_{i+1, 1}- A_{i, 1}} A_{i+1 ,2} +

\left (1 - \frac{\mathit{NOW}}{A_{i+1, 1}- A_{i, 1}}\right) A_{i,2}
\end{ equation}
If $\mathit{NOW} < A_{1, 1 }$, the return value is \texttt{A[1 ,2]}, and
if $\mathit{NOW} > A_{N, 1}$ (where N is the number of rows in
\texttt{A}), then the value is \texttt{A[N, 1]}.

Forcings of type \RSTEP and \LSTEP are step functions:

For example, suppose
an ecological system with variable rate of influx of carbon, and
first-order loss of carbon. Then, declare in \VARIABLES:
\begin{verbatim}
BEGIN FORGINGS

influx= LINEAR A;
END
\end{ verbatim}
Then, in \CONTINUOUS:
\begin{verbatim}
Carbon' = influx- 0.1 *Carbon;
\end{ verbatim}

\section{Using \RDynamic }

The result of translating an \RDynamic source file is an \R source
package, and, optionally, an \R binary package, ready to be installed.
The package contains online documentation for the model, and all the
code to run it. To compile the pyrethroid example if the code from
Appendix A is in the file pyrethroid.ode, and install it in the folder
C:\textbackslash{}RModels, the following commands in R would suffice:

\begin{verbatim}
> library(RDynamic)
> Ode2c("pyrethroiod.ode", compile=TRUE)
> install.packages("pyrethroid.zip", lib="C:/RModels", repos=NULL)
\end{ verbatim}

ED_001592_00018247-00015

To use the newly compiled model:

\begin{verbatim}
> library(pyrethroid, lib.loc="C:/RModels")
\end{ verbatim}
Then, to get help for the function pyrethroid(),

\begin{verbatim}
> ?pyrethroid
\end{ verbatim}
will return all the documentation originally entered into the model
file, as well as details on how to call the function which includes
the names of all the modifiable parameters and all the state variable
names.

The full call to the new model function looks like:

\begin{verbatim}
pyrethroid(times, ystart, RTol, ATol, Parms, ...)
\end{ verbatim}
'times' is a vector of times at which values of the state variables
should be output. 'ystart' is an optional vector of initial values.
If it is omitted, the initialization in the model file is used. However,
it may be useful to continue the simulation for longer times after
an initial run. Then, ystart is set to the final state in the previous
model run, and times starts with the final time in the previous run.
'RTol' and 'ATol' control precision of the numerical solution; you
may need to experiment with their values. 'Parms' is a named vector
of default parameter values. It will default to the values in the
model file, but it may be convenient to have several sets of values,
for example for different species. Finally, values for individual
parameters may be provided as arguments, as IVDOSE = 10, for example.

{[}more on the structure of the output here]

\appendix

\section{Example: A Complete PBPK Model for Pyrethroid Kinetics}

\begingroup
\inputencoding{latin1}
\begin{verbatim}

\end{ verbatim}
\endgroup

\end{ document}

ED_001592_00018247-00016

